第五十三节:指针的第一大好处,让一个函数可以封装多个相当于return语句返回的参数。

开场白: 当我们想把某种算法通过一个函数来实现的时候,如果不会指针,那么只有两种方法。 第1种:用不带参数返回的空函数。这是最原始的做法,也是我当年刚毕业就开始做项目的时候经常用的方法。它完全依靠全局变量作为函数的输入和输出口。我们要用到这个函数,就要把参与运算的变量直接赋给对应的输入全局变量,调用一次函数之后,再找到对应的输出变量,这些输出变量就是我们要的结果。这种方法的缺点是阅读不直观,封装性不强,没有面对用户的输入输出接口。 第2种:用return返回参数和带输入形参的函数,这种方法已经具备了完整的输入和输出性能,比第1种方法直观多了。但是这种方法有它的局限性,因为return只能返回一个变量,如果要用在返回多个输出结果的函数中,就无能为力了,这时候该怎么办?就必须用指针了,也就是我下面讲到的第3种方法。 这一节要教大家一个知识点:通过指针,让函数可以返回多个变量。

具体内容,请看源代码讲解。

(1)硬件平台: 基于朱兆祺51单片机学习板。

(2)实现功能: 通过电脑串口调试助手,往单片机发送EB 00 55 XX YY 指令,其中EB 00 55是数据头, XX是被除数,YY是除数。单片机收到指令后就会返回6个数据,最前面两个数据是第1种运算方式的商和余数,中间两个数据是第2种运算方式的商和余数,最后两个数据是第3种运算方式的商和余数。 比如电脑发送:EB 00 55 08 02 单片机就返回:04 00 04 00 04 00 (04是商,00是余数)

串口程序的接收部分请参考第39节。串口程序的发送部分请参考第42节。

波特率是:9600 。

(3)源代码讲解如下:

#include "REG52.H"


#define const_voice_short  40   //蜂鸣器短叫的持续时间
#define const_rc_size  10  //接收串口中断数据的缓冲区数组大小

#define const_receive_time  5  //如果超过这个时间没有串口数据过来,就认为一串数据已经全部接收完,这个时间根据实际情况来调整大小

void initial_myself(void);    
void initial_peripheral(void);
void delay_long(unsigned int uiDelaylong);
void delay_short(unsigned int uiDelayShort); 


void T0_time(void);  //定时中断函数
void usart_receive(void); //串口接收中断函数
void usart_service(void);  //串口服务程序,在main函数里


void eusart_send(unsigned char ucSendData);
void chu_fa_yun_suan_1(void);//第1种方法 求商和余数
unsigned char get_shang_2(unsigned char ucBeiChuShuTemp,unsigned char ucChuShuTemp); //第2种方法 求商
unsigned char get_yu_2(unsigned char ucBeiChuShuTemp,unsigned char ucChuShuTemp); //第2种方法 求余数
void chu_fa_yun_suan_3(unsigned char ucBeiChuShuTemp,unsigned char ucChuShuTemp,unsigned char *p_ucShangTemp,unsigned char *p_ucYuTemp);//第3种方法 求商和余数

sbit beep_dr=P2^7; //蜂鸣器的驱动IO口

unsigned int  uiSendCnt=0;     //用来识别串口是否接收完一串数据的计时器
unsigned char ucSendLock=1;    //串口服务程序的自锁变量,每次接收完一串数据只处理一次
unsigned int  uiRcregTotal=0;  //代表当前缓冲区已经接收了多少个数据
unsigned char ucRcregBuf[const_rc_size]; //接收串口中断数据的缓冲区数组
unsigned int  uiRcMoveIndex=0;  //用来解析数据协议的中间变量


unsigned int  uiVoiceCnt=0;  //蜂鸣器鸣叫的持续时间计数器


unsigned char ucBeiChuShu_1=0;  //第1种方法中的被除数
unsigned char ucChuShu_1=1;     //第1种方法中的除数
unsigned char ucShang_1=0;      //第1种方法中的商
unsigned char ucYu_1=0;         //第1种方法中的余数

unsigned char ucBeiChuShu_2=0;  //第2种方法中的被除数
unsigned char ucChuShu_2=1;     //第2种方法中的除数
unsigned char ucShang_2=0;      //第2种方法中的商
unsigned char ucYu_2=0;         //第2种方法中的余数

unsigned char ucBeiChuShu_3=0;  //第3种方法中的被除数
unsigned char ucChuShu_3=1;     //第3种方法中的除数
unsigned char ucShang_3=0;      //第3种方法中的商
unsigned char ucYu_3=0;         //第3种方法中的余数

void main() 
  {
   initial_myself();  
   delay_long(100);   
   initial_peripheral(); 
   while(1)  
   { 
       usart_service();  //串口服务程序
   }

}


/* 注释一:
* 第1种方法,用不带参数返回的空函数,这是最原始的做法,也是我当年刚毕业
* 就开始做项目的时候经常用的方法。它完全依靠全局变量作为函数的输入和输出口。
* 我们要用到这个函数,就要把参与运算的变量直接赋给对应的输入全局变量,
* 调用一次函数之后,再找到对应的输出变量,这些输出变量就是我们要的结果。
* 在本函数中,被除数ucBeiChuShu_1和除数ucChuShu_1就是输入全局变量,
* 商ucShang_1和余数ucYu_1就是输出全局变量。这种方法的缺点是阅读不直观,
* 封装性不强,没有面对用户的输入输出接口,
*/
void chu_fa_yun_suan_1(void)//第1种方法 求商和余数
{
   if(ucChuShu_1==0) //如果除数为0,则商和余数都为0
   {
      ucShang_1=0;
          ucYu_1=0;
   }
   else
   {
      ucShang_1=ucBeiChuShu_1/ucChuShu_1;  //求商
      ucYu_1=ucBeiChuShu_1%ucChuShu_1;  //求余数
   }

}


/* 注释二:
* 第2种方法,用return返回参数和带输入形参的函数,这种方法已经具备了完整的输入和输出性能,
* 比第1种方法直观多了。但是这种方法有它的局限性,因为return只能返回一个变量,
* 如果要用在返回多个输出结果的函数中,就无能为力了。比如本程序,就不能同时输出
* 商和余数,只能分两个函数来做。如果要在一个函数中同时输出商和余数,该怎么办?
* 这个时候就必须用指针了,也就是我下面讲到的第3种方法。
*/
unsigned char get_shang_2(unsigned char ucBeiChuShuTemp,unsigned char ucChuShuTemp) //第2种方法 求商
{
   unsigned char ucShangTemp;
   if(ucChuShuTemp==0) //如果除数为0,则商为0
   {
      ucShangTemp=0;
   }
   else
   {
      ucShangTemp=ucBeiChuShuTemp/ucChuShuTemp;  //求商
   }

   return ucShangTemp; //返回运算后的结果 商
}

unsigned char get_yu_2(unsigned char ucBeiChuShuTemp,unsigned char ucChuShuTemp) //第2种方法 求余数
{
   unsigned char ucYuTemp;
   if(ucChuShuTemp==0) //如果除数为0,则余数为0
   {
      ucYuTemp=0;
   }
   else
   {
      ucYuTemp=ucBeiChuShuTemp%ucChuShuTemp;   //求余数
   }

   return ucYuTemp; //返回运算后的结果 余数
}

/* 注释三:
* 第3种方法,用带指针的函数,就可以顺心所欲,不受return的局限,想输出多少个
* 运算结果都可以,赞一个!在本函数中,ucBeiChuShuTemp和ucChuShuTemp是输入变量,
* 它们不是指针,所以不具备输出接口属性。*p_ucShangTemp和*p_ucYuTemp是输出变量,
* 因为它们是指针,所以具备输出接口属性。
*/
void chu_fa_yun_suan_3(unsigned char ucBeiChuShuTemp,unsigned char ucChuShuTemp,unsigned char *p_ucShangTemp,unsigned char *p_ucYuTemp)//第3种方法 求商和余数
{
   if(ucChuShuTemp==0) //如果除数为0,则商和余数都为0
   {
      *p_ucShangTemp=0;
          *p_ucYuTemp=0;
   }
   else
   {
      *p_ucShangTemp=ucBeiChuShuTemp/ucChuShuTemp;  //求商
      *p_ucYuTemp=ucBeiChuShuTemp%ucChuShuTemp;  //求余数
   }

}

void usart_service(void)  //串口服务程序,在main函数里
{

        

     if(uiSendCnt>=const_receive_time&&ucSendLock==1) //说明超过了一定的时间内,再也没有新数据从串口来
     {

            ucSendLock=0;    //处理一次就锁起来,不用每次都进来,除非有新接收的数据

            //下面的代码进入数据协议解析和数据处理的阶段

            uiRcMoveIndex=0; //由于是判断数据头,所以下标移动变量从数组的0开始向最尾端移动

            while(uiRcregTotal>=5&&uiRcMoveIndex<=(uiRcregTotal-5)) 
            {
               if(ucRcregBuf[uiRcMoveIndex+0]==0xeb&&ucRcregBuf[uiRcMoveIndex+1]==0x00&&ucRcregBuf[uiRcMoveIndex+2]==0x55)  //数据头eb 00 55的判断
               {

                  //第1种运算方法,依靠全局变量
                  ucBeiChuShu_1=ucRcregBuf[uiRcMoveIndex+3]; //被除数
                  ucChuShu_1=ucRcregBuf[uiRcMoveIndex+4];  //除数
                                  chu_fa_yun_suan_1(); //调用一次空函数就出结果了,结果保存在ucShang_1和ucYu_1全局变量中
                                  eusart_send(ucShang_1); //把运算结果返回给上位机观察
                                  eusart_send(ucYu_1);//把运算结果返回给上位机观察

                  //第2种运算方法,依靠两个带return语句的返回函数
                  ucBeiChuShu_2=ucRcregBuf[uiRcMoveIndex+3]; //被除数
                  ucChuShu_2=ucRcregBuf[uiRcMoveIndex+4];  //除数
                  ucShang_2=get_shang_2(ucBeiChuShu_2,ucChuShu_2); //第2种方法 求商
                  ucYu_2=get_yu_2(ucBeiChuShu_2,ucChuShu_2); //第2种方法 求余数
                                  eusart_send(ucShang_2); //把运算结果返回给上位机观察
                                  eusart_send(ucYu_2);//把运算结果返回给上位机观察

                  //第3种运算方法,依靠指针
                  ucBeiChuShu_3=ucRcregBuf[uiRcMoveIndex+3]; //被除数
                  ucChuShu_3=ucRcregBuf[uiRcMoveIndex+4];  //除数
/* 注释四:
* 注意,由于商和余数是指针形参,我们代入的变量必须带地址符号& 。比如&ucShang_3和&ucYu_3。
* 因为我们是把变量的地址传递进去的。
*/
                                  chu_fa_yun_suan_3(ucBeiChuShu_3,ucChuShu_3,&ucShang_3,&ucYu_3);//第3种方法 求商和余数 
                                  eusart_send(ucShang_3); //把运算结果返回给上位机观察
                                  eusart_send(ucYu_3);//把运算结果返回给上位机观察


                  break;   //退出循环
               }
               uiRcMoveIndex++; //因为是判断数据头,游标向着数组最尾端的方向移动
           }
                                         
           uiRcregTotal=0;  //清空缓冲的下标,方便下次重新从0下标开始接受新数据
  
     }
                         
}

void eusart_send(unsigned char ucSendData) //往上位机发送一个字节的函数
{

  ES = 0; //关串口中断
  TI = 0; //清零串口发送完成中断请求标志
  SBUF =ucSendData; //发送一个字节

  delay_short(400);  //每个字节之间的延时,这里非常关键,也是最容易出错的地方。延时的大小请根据实际项目来调整

  TI = 0; //清零串口发送完成中断请求标志
  ES = 1; //允许串口中断

}



void T0_time(void) interrupt 1    //定时中断
{
  TF0=0;  //清除中断标志
  TR0=0; //关中断


  if(uiSendCnt<const_receive_time)   //如果超过这个时间没有串口数据过来,就认为一串数据已经全部接收完
  {
          uiSendCnt++;    //表面上这个数据不断累加,但是在串口中断里,每接收一个字节它都会被清零,除非这个中间没有串口数据过来
      ucSendLock=1;     //开自锁标志
  }

  if(uiVoiceCnt!=0)
  {
     uiVoiceCnt--; //每次进入定时中断都自减1,直到等于零为止。才停止鸣叫
     beep_dr=0;  //蜂鸣器是PNP三极管控制,低电平就开始鸣叫。

  }
  else
  {
     ; //此处多加一个空指令,想维持跟if括号语句的数量对称,都是两条指令。不加也可以。
     beep_dr=1;  //蜂鸣器是PNP三极管控制,高电平就停止鸣叫。
  }


  TH0=0xfe;   //重装初始值(65535-500)=65035=0xfe0b
  TL0=0x0b;
  TR0=1;  //开中断
}


void usart_receive(void) interrupt 4                 //串口接收数据中断        
{        

   if(RI==1)  
   {
        RI = 0;

            ++uiRcregTotal;
        if(uiRcregTotal>const_rc_size)  //超过缓冲区
        {
           uiRcregTotal=const_rc_size;
        }
        ucRcregBuf[uiRcregTotal-1]=SBUF;   //将串口接收到的数据缓存到接收缓冲区里
        uiSendCnt=0;  //及时喂狗,虽然main函数那边不断在累加,但是只要串口的数据还没发送完毕,那么它永远也长不大,因为每个中断都被清零。
    
   }
   else  //发送中断,及时把发送中断标志位清零
   {
        TI = 0;
   }
                                                         
}                                


void delay_long(unsigned int uiDelayLong)
{
   unsigned int i;
   unsigned int j;
   for(i=0;i<uiDelayLong;i++)
   {
      for(j=0;j<500;j++)  //内嵌循环的空指令数量
          {
             ; //一个分号相当于执行一条空语句
          }
   }
}

void delay_short(unsigned int uiDelayShort) 
{
   unsigned int i;  
   for(i=0;i<uiDelayShort;i++)
   {
     ;   //一个分号相当于执行一条空语句
   }
}


void initial_myself(void)  //第一区 初始化单片机
{

  beep_dr=1; //用PNP三极管控制蜂鸣器,输出高电平时不叫。

  //配置定时器
  TMOD=0x01;  //设置定时器0为工作方式1
  TH0=0xfe;   //重装初始值(65535-500)=65035=0xfe0b
  TL0=0x0b;


  //配置串口
  SCON=0x50;
  TMOD=0X21;
  TH1=TL1=-(11059200L/12/32/9600);  //这段配置代码具体是什么意思,我也不太清楚,反正是跟串口波特率有关。
  TR1=1;

}

void initial_peripheral(void) //第二区 初始化外围
{

   EA=1;     //开总中断
   ES=1;     //允许串口中断
   ET0=1;    //允许定时中断
   TR0=1;    //启动定时中断

}

总结陈词: 这节讲了指针的第一大好处,它的第二大好处是什么?欲知详情,请听下回分解—–指针的第二大好处,指针作为数组在函数内部的化身。