第五十一节:利用ADC0832采集电压信号,用连续N次一致性的方法进行滤波处理。

开场白: 连续判断N次一致性的滤波法,为了避免末尾小数点的数据偶尔跳动。这种滤波方法的原理跟我在按键扫描中去抖动的原理是一模一样的,被我频繁地应用在大量的工控项目中。 这一节要教会大家一个知识点:连续判断N次一致性的滤波法。 具体原理:当某个采样变量发生变化时,有两种可能,一种可能是外界的一个瞬间干扰。另一种可能是变量确实发生变化。为了有效去除干扰,当发现变量有变化时,我会连续采集N次,如果连续N次都是一致的结果,我才认为不是干扰。如果中间只要出现一次不一致,我会马上把计数器清零,这一步是精华,很关键。

具体内容,请看源代码讲解。

(1) 硬件平台. 基于朱兆祺51单片机学习板。

(2)实现功能: 本程序有2个局部显示。 第1个局部是第8,7,6,5位数码管,显示没有经过滤波处理的实际电压值。此时能观察到未经滤波的数据不太稳定,末尾小数点数据会有跳动的现象 第2个局部是第4,3,2,1位数码管,显示经过特定算法滤波后的实际电压值。此时能观察到经过滤波后的数据很稳定,没有跳动的现象。而且显示的电压值跟未经过滤波的电压值几乎是完全一致,不会出现上一节用区间滤波法所留下的0.02V误差问题。

系统保留3位小数点。手动调节可调电阻时,可以看到显示的数据在变化。

(3)源代码讲解如下:

#include "REG52.H"

#define const_N   8  //连续判断N次一致性滤波方法中,N的取值
#define const_voice_short  40   //蜂鸣器短叫的持续时间

void initial_myself(void);    
void initial_peripheral(void);
void delay_short(unsigned int uiDelayShort); 
void delay_long(unsigned int uiDelaylong);


//驱动数码管的74HC595
void dig_hc595_drive(unsigned char ucDigStatusTemp16_09,unsigned char ucDigStatusTemp08_01);  
void display_drive(void); //显示数码管字模的驱动函数
void display_service(void); //显示的窗口菜单服务程序
//驱动LED的74HC595
void hc595_drive(unsigned char ucLedStatusTemp16_09,unsigned char ucLedStatusTemp08_01);

void T0_time(void);  //定时中断函数

void ad_sampling_service(void); //AD采样与处理的服务程序


sbit led_dr=P3^5;  //LED灯
sbit beep_dr=P2^7; //蜂鸣器的驱动IO口



sbit dig_hc595_sh_dr=P2^0;     //数码管的74HC595程序
sbit dig_hc595_st_dr=P2^1;  
sbit dig_hc595_ds_dr=P2^2;  
sbit hc595_sh_dr=P2^3;    //LED灯的74HC595程序
sbit hc595_st_dr=P2^4;  
sbit hc595_ds_dr=P2^5;  


sbit adc0832_clk_dr     = P1^2;  // 定义adc0832的引脚
sbit adc0832_cs_dr      = P1^0;
sbit adc0832_data_sr_dr = P1^1;


unsigned char ucDigShow8;  //第8位数码管要显示的内容
unsigned char ucDigShow7;  //第7位数码管要显示的内容
unsigned char ucDigShow6;  //第6位数码管要显示的内容
unsigned char ucDigShow5;  //第5位数码管要显示的内容
unsigned char ucDigShow4;  //第4位数码管要显示的内容
unsigned char ucDigShow3;  //第3位数码管要显示的内容
unsigned char ucDigShow2;  //第2位数码管要显示的内容
unsigned char ucDigShow1;  //第1位数码管要显示的内容

unsigned char ucDigDot8;  //数码管8的小数点是否显示的标志
unsigned char ucDigDot7;  //数码管7的小数点是否显示的标志
unsigned char ucDigDot6;  //数码管6的小数点是否显示的标志
unsigned char ucDigDot5;  //数码管5的小数点是否显示的标志
unsigned char ucDigDot4;  //数码管4的小数点是否显示的标志
unsigned char ucDigDot3;  //数码管3的小数点是否显示的标志
unsigned char ucDigDot2;  //数码管2的小数点是否显示的标志
unsigned char ucDigDot1;  //数码管1的小数点是否显示的标志
unsigned char ucDigShowTemp=0; //临时中间变量
unsigned char ucDisplayDriveStep=1;  //动态扫描数码管的步骤变量


unsigned char ucWd1Part1Update=1;  //在窗口1中,局部1的更新显示标志
unsigned char ucWd1Part2Update=1; //在窗口1中,局部2的更新显示标志


unsigned char ucTemp1=0;  //中间过渡变量
unsigned char ucTemp2=0;  //中间过渡变量
unsigned char ucTemp3=0;  //中间过渡变量
unsigned char ucTemp4=0;  //中间过渡变量
unsigned char ucTemp5=0;  //中间过渡变量
unsigned char ucTemp6=0;  //中间过渡变量
unsigned char ucTemp7=0;  //中间过渡变量
unsigned char ucTemp8=0;  //中间过渡变量

unsigned char ucAD=0;   //AD值
unsigned char ucCheckAD=0; //用来做校验对比的AD值


unsigned long ulTemp=0;  //参与换算的中间变量
unsigned long ulTempFilterV=0; //参与换算的中间变量
unsigned long ulBackupFilterV=5000;  //备份最新采样数据的中间变量
unsigned char ucSamplingCnt=0; //记录连续N次采样的计数器

unsigned long ulV=0; //未经滤波处理的实时电压值
unsigned long ulFilterV=0; //经过滤波后的实时电压值


//根据原理图得出的共阴数码管字模表
code unsigned char dig_table[]=
{
0x3f,  //0       序号0
0x06,  //1       序号1
0x5b,  //2       序号2
0x4f,  //3       序号3
0x66,  //4       序号4
0x6d,  //5       序号5
0x7d,  //6       序号6
0x07,  //7       序号7
0x7f,  //8       序号8
0x6f,  //9       序号9
0x00,  //无      序号10
0x40,  //-       序号11
0x73,  //P       序号12
};
void main() 
  {
   initial_myself();  
   delay_long(100);   
   initial_peripheral(); 
   while(1)  
   { 
      ad_sampling_service(); //AD采样与处理的服务程序
      display_service(); //显示的窗口菜单服务程序
   }
}

void ad_sampling_service(void) //AD采样与处理的服务程序
{
    unsigned char i;

    ucAD=0;   //AD值
    ucCheckAD=0; //用来做校验对比的AD值


    /* 片选信号置为低电平 */
    adc0832_cs_dr = 0;

        /* 第一个脉冲,开始位 */
        adc0832_data_sr_dr = 1;
        adc0832_clk_dr  = 0;
    delay_short(1);
        adc0832_clk_dr  = 1;

        /* 第二个脉冲,选择通道 */
        adc0832_data_sr_dr = 1;
        adc0832_clk_dr  = 0;
        adc0832_clk_dr  = 1;

        /* 第三个脉冲,选择通道 */
        adc0832_data_sr_dr = 0;
        adc0832_clk_dr  = 0;
        adc0832_clk_dr  = 1;

    /* 数据线输出高电平 */
        adc0832_data_sr_dr = 1;
    delay_short(2);

        /* 第一个下降沿 */
        adc0832_clk_dr  = 1;
        adc0832_clk_dr  = 0;
    delay_short(1);


        /* AD值开始送出 */
        for (i = 0; i < 8; i++)
        {
        ucAD <<= 1;
                adc0832_clk_dr = 1;
                adc0832_clk_dr = 0;
                if (adc0832_data_sr_dr==1)
                {
            ucAD |= 0x01;
                }
        }

        /* 用于校验的AD值开始送出 */
        for (i = 0; i < 8; i++)
        {
        ucCheckAD >>= 1;
                if (adc0832_data_sr_dr==1)
                {
           ucCheckAD |= 0x80; 
                }
                adc0832_clk_dr = 1;
                adc0832_clk_dr = 0;
        }
        
        /* 片选信号置为高电平 */
        adc0832_cs_dr = 1;


        if(ucCheckAD==ucAD)  //检验相等
        {
        
            ulTemp=0;  //把char类型数据赋值给long类型数据之前,必须先清零
            ulTemp=ucAD; //把char类型数据赋值给long类型数据,参与乘除法运算的数据,为了避免运算结果溢出,我都用long类型

/* 注释一:
* 因为保留3为小数点,这里的5000代表5.000V。ulTemp/255代表分辨率.
* 有些书上说8位AD最高分辩可达到256级(0xff+1),我认为这种说法是错误的。
* 8位AD最高分辩应该是255级(0xff),所以这里除以255,而不是256.
*/
            ulTemp=5000*ulTemp/255;  //进行电压换算
            ulV=ulTemp; //得到未经滤波处理的实时电压值
            ucWd1Part1Update=1; //局部更新显示未经滤波处理的电压


/* 注释二:
* 以下连续判断N次一致性的滤波法,为了避免末尾小数点的数据偶尔跳动。
* 这种滤波方法的原理跟我在按键扫描中的去抖动原理是一模一样的,被我频繁
* 地应用在大量的工控项目中。
* 具体原理:当某个采样变量发生变化时,有两种可能,一种可能是外界的一个瞬间干扰。
* 另一种可能是变量确实发生变化。为了有效去除干扰,当发现变量有变化时,
* 我会连续采集N次,如果连续N次都是一致的结果,我才认为不是干扰。如果中间
* 只要出现一次不一致,我会马上把计数器清零,这一步是精华,很关键。
* 
*/
                      if(ulTempFilterV!=ulTemp) //发现变量有变化
                     {
                        ucSamplingCnt++;    //计数器累加
                              if(ucSamplingCnt>const_N)  //如果连续N次都是一致的,则认为不是干扰。确实有数据需要更新显示。这里的const_N取值是8
                            {
                                ucSamplingCnt=0;

                                ulTempFilterV=ulTemp;   //及时保存更新了的数据,方便下一次有新数据对比做准备

                    ulFilterV=ulTempFilterV; //得到经过滤波处理的实时电压值
                    ucWd1Part2Update=1; //局部更新显示经过滤波处理的电压                         
                            }
                       }
                    else
                    {
                         ucSamplingCnt=0;  //只要出现一次不一致,我会马上把计数器清零,这一步是精华,很关键。
                    }



        
        }

}

void display_service(void) //显示的窗口菜单服务程序
{

                        if(ucWd1Part1Update==1)//未经滤波处理的实时电压更新显示
                        {
                           ucWd1Part1Update=0;

               ucTemp8=ulV%10000/1000;  //显示电压值个位
               ucTemp7=ulV%1000/100;    //显示电压值小数点后第1位
               ucTemp6=ulV%100/10;      //显示电压值小数点后第2位
               ucTemp5=ulV%10;          //显示电压值小数点后第3位


               ucDigShow8=ucTemp8; //数码管显示实际内容
               ucDigShow7=ucTemp7; 
               ucDigShow6=ucTemp6; 
               ucDigShow5=ucTemp5; 
                        }


                        if(ucWd1Part2Update==1)//经过滤波处理后的实时电压更新显示
                        {
                             ucWd1Part2Update=0;

               ucTemp4=ulFilterV%10000/1000;  //显示电压值个位
               ucTemp3=ulFilterV%1000/100;    //显示电压值小数点后第1位
               ucTemp2=ulFilterV%100/10;      //显示电压值小数点后第2位
               ucTemp1=ulFilterV%10;          //显示电压值小数点后第3位


               ucDigShow4=ucTemp4; //数码管显示实际内容
               ucDigShow3=ucTemp3; 
               ucDigShow2=ucTemp2; 
               ucDigShow1=ucTemp1; 
                        }


}



void display_drive(void)  
{
   //以下程序,如果加一些数组和移位的元素,还可以压缩容量。但是鸿哥追求的不是容量,而是清晰的讲解思路
   switch(ucDisplayDriveStep)
   { 
      case 1:  //显示第1位
           ucDigShowTemp=dig_table[ucDigShow1];
                   if(ucDigDot1==1)
                   {
                      ucDigShowTemp=ucDigShowTemp|0x80;  //显示小数点
                   }
           dig_hc595_drive(ucDigShowTemp,0xfe);
               break;
      case 2:  //显示第2位
           ucDigShowTemp=dig_table[ucDigShow2];
                   if(ucDigDot2==1)
                   {
                      ucDigShowTemp=ucDigShowTemp|0x80;  //显示小数点
                   }
           dig_hc595_drive(ucDigShowTemp,0xfd);
               break;
      case 3:  //显示第3位
           ucDigShowTemp=dig_table[ucDigShow3];
                   if(ucDigDot3==1)
                   {
                      ucDigShowTemp=ucDigShowTemp|0x80;  //显示小数点
                   }
           dig_hc595_drive(ucDigShowTemp,0xfb);
               break;
      case 4:  //显示第4位
           ucDigShowTemp=dig_table[ucDigShow4];
                   if(ucDigDot4==1)
                   {
                      ucDigShowTemp=ucDigShowTemp|0x80;  //显示小数点
                   }
           dig_hc595_drive(ucDigShowTemp,0xf7);
               break;
      case 5:  //显示第5位
           ucDigShowTemp=dig_table[ucDigShow5];
                   if(ucDigDot5==1)
                   {
                      ucDigShowTemp=ucDigShowTemp|0x80;  //显示小数点
                   }
           dig_hc595_drive(ucDigShowTemp,0xef);
               break;
      case 6:  //显示第6位
           ucDigShowTemp=dig_table[ucDigShow6];
                   if(ucDigDot6==1)
                   {
                      ucDigShowTemp=ucDigShowTemp|0x80;  //显示小数点
                   }
           dig_hc595_drive(ucDigShowTemp,0xdf);
               break;
      case 7:  //显示第7位
           ucDigShowTemp=dig_table[ucDigShow7];
                   if(ucDigDot7==1)
                   {
                      ucDigShowTemp=ucDigShowTemp|0x80;  //显示小数点
           }
           dig_hc595_drive(ucDigShowTemp,0xbf);
               break;
      case 8:  //显示第8位
           ucDigShowTemp=dig_table[ucDigShow8];
                   if(ucDigDot8==1)
                   {
                      ucDigShowTemp=ucDigShowTemp|0x80;  //显示小数点
                   }
           dig_hc595_drive(ucDigShowTemp,0x7f);
               break;
   }
   ucDisplayDriveStep++;
   if(ucDisplayDriveStep>8)  //扫描完8个数码管后,重新从第一个开始扫描
   {
     ucDisplayDriveStep=1;
   }

}

//数码管的74HC595驱动函数
void dig_hc595_drive(unsigned char ucDigStatusTemp16_09,unsigned char ucDigStatusTemp08_01)
{
   unsigned char i;
   unsigned char ucTempData;
   dig_hc595_sh_dr=0;
   dig_hc595_st_dr=0;
   ucTempData=ucDigStatusTemp16_09;  //先送高8位
   for(i=0;i<8;i++)
   { 
         if(ucTempData>=0x80)dig_hc595_ds_dr=1;
         else dig_hc595_ds_dr=0;
         dig_hc595_sh_dr=0;     //SH引脚的上升沿把数据送入寄存器
         delay_short(1); 
         dig_hc595_sh_dr=1;
         delay_short(1);
         ucTempData=ucTempData<<1;
   }
   ucTempData=ucDigStatusTemp08_01;  //再先送低8位
   for(i=0;i<8;i++)
   { 
         if(ucTempData>=0x80)dig_hc595_ds_dr=1;
         else dig_hc595_ds_dr=0;
         dig_hc595_sh_dr=0;     //SH引脚的上升沿把数据送入寄存器
         delay_short(1); 
         dig_hc595_sh_dr=1;
         delay_short(1);
         ucTempData=ucTempData<<1;
   }
   dig_hc595_st_dr=0;  //ST引脚把两个寄存器的数据更新输出到74HC595的输出引脚上并且锁存起来
   delay_short(1); 
   dig_hc595_st_dr=1;
   delay_short(1);
   dig_hc595_sh_dr=0;    //拉低,抗干扰就增强
   dig_hc595_st_dr=0;
   dig_hc595_ds_dr=0;
}

//LED灯的74HC595驱动函数
void hc595_drive(unsigned char ucLedStatusTemp16_09,unsigned char ucLedStatusTemp08_01)
{
   unsigned char i;
   unsigned char ucTempData;
   hc595_sh_dr=0;
   hc595_st_dr=0;
   ucTempData=ucLedStatusTemp16_09;  //先送高8位
   for(i=0;i<8;i++)
   { 
         if(ucTempData>=0x80)hc595_ds_dr=1;
         else hc595_ds_dr=0;
         hc595_sh_dr=0;     //SH引脚的上升沿把数据送入寄存器
         delay_short(1); 
         hc595_sh_dr=1;
         delay_short(1);
         ucTempData=ucTempData<<1;
   }
   ucTempData=ucLedStatusTemp08_01;  //再先送低8位
   for(i=0;i<8;i++)
   { 
         if(ucTempData>=0x80)hc595_ds_dr=1;
         else hc595_ds_dr=0;
         hc595_sh_dr=0;     //SH引脚的上升沿把数据送入寄存器
         delay_short(1); 
         hc595_sh_dr=1;
         delay_short(1);
         ucTempData=ucTempData<<1;
   }
   hc595_st_dr=0;  //ST引脚把两个寄存器的数据更新输出到74HC595的输出引脚上并且锁存起来
   delay_short(1); 
   hc595_st_dr=1;
   delay_short(1);
   hc595_sh_dr=0;    //拉低,抗干扰就增强
   hc595_st_dr=0;
   hc595_ds_dr=0;
}


void T0_time(void) interrupt 1   //定时中断
{
  TF0=0;  //清除中断标志
  TR0=0; //关中断


  display_drive();  //数码管字模的驱动函数

  TH0=0xfe;   //重装初始值(65535-500)=65035=0xfe0b
  TL0=0x0b;
  TR0=1;  //开中断
}

void delay_short(unsigned int uiDelayShort) 
{
   unsigned int i;  
   for(i=0;i<uiDelayShort;i++)
   {
     ;   //一个分号相当于执行一条空语句
   }
}

void delay_long(unsigned int uiDelayLong)
{
   unsigned int i;
   unsigned int j;
   for(i=0;i<uiDelayLong;i++)
   {
      for(j=0;j<500;j++)  //内嵌循环的空指令数量
          {
             ; //一个分号相当于执行一条空语句
          }
   }
}


void initial_myself(void)  //第一区 初始化单片机
{
  led_dr=0;//LED灯默认关闭
  beep_dr=1; //用PNP三极管控制蜂鸣器,输出高电平时不叫。
  hc595_drive(0x00,0x00);  //关闭所有经过另外两个74HC595驱动的LED灯
  TMOD=0x01;  //设置定时器0为工作方式1
  TH0=0xfe;   //重装初始值(65535-500)=65035=0xfe0b
  TL0=0x0b;

}
void initial_peripheral(void) //第二区 初始化外围
{

   ucDigDot8=1;   //显示未经过滤波电压的小数点
   ucDigDot7=0;  
   ucDigDot6=0; 
   ucDigDot5=0;  
   ucDigDot4=1;  //显示经过滤波后电压的小数点
   ucDigDot3=0;  
   ucDigDot2=0;
   ucDigDot1=0;

   EA=1;     //开总中断
   ET0=1;    //允许定时中断
   TR0=1;    //启动定时中断

}

总结陈词: 在单片机AD采样的系统中,我常用的滤波方法有求平均值法,区间法,连续判断N次一致性这三种方法。读者可以根据不同的系统特点选择对应的滤波方法,有一些要求高的系统还可以把三种滤波方法混合在一起用。关于AD采样的知识到本节已经讲完,下一节会讲什么新内容呢?欲知详情,请听下回分解—–return语句鲜为人知的用法。